已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.
(本小题满分14分)已知函数(其中,e是自然对数的底数,e=2.71828…).(Ⅰ)当时,求函数的极值;(Ⅱ)若恒成立,求实数a的取值范围;(Ⅲ)求证:对任意正整数n,都有.
(本小题满分13分)已知椭圆Ω:的焦距为,且经过点.(Ⅰ)求椭圆Ω的方程;(Ⅱ)A是椭圆Ω与轴正半轴的交点, 椭圆Ω上是否存在两点M、N,使得△AMN是以A为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分12分)等差数列的前n项和为,数列是等比数列,满足,, ,.(Ⅰ)求数列和的通项公式;(Ⅱ)令设数列的前n项和,求.
(本小题满分12分)四棱锥S-ABCD中,侧面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N分别是AB、SC的中点.(Ⅰ)求证:MN∥平面SAD;(Ⅱ)求二面角S-CM-D的余弦值.
(本小题满分12分)在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:(Ⅰ)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(Ⅱ)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为,求的分布列和数学期望.