以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2]),其中为x1,x2,…,xn的平均数)
已知函数=(1)若-2(a,b∈Z),求等式>0的解集为R的概率;(2)若,求方程=0两根都为负数的概率.
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+)(1)证明:数列{an+1-an }是等比数列;(2)求数列{an}的通项公式
(本小题满分14分)如图所示,椭圆C: 的两个焦点为、,短轴两个端点为、.已知、、 成等比数列,,与 轴不垂直的直线 与C 交于不同的两点、,记直线、的斜率分别为、,且.(Ⅰ)求椭圆 的方程;(Ⅱ)求证直线 与 轴相交于定点,并求出定点坐标;(Ⅲ)当弦 的中点落在四边形 内(包括边界)时,求直线 的斜率的取值范围.
(本小题满分12分)函数,其中.(Ⅰ)试讨论函数 的单调性;(Ⅱ)已知当(其中 是自然对数的底数)时,在 上至少存在一点,使 成立,求 的取值范围;(Ⅲ)求证:当 时,对任意,,有.
(本小题满分12分)已知 是各项都为正数的数列,其前 项和为,且满足.(Ⅰ)求,, 的值;(Ⅱ)求数列 的通项公式;(Ⅲ)令=,求证.