某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:, ,后得到如图的频率分布直方图.(Ⅰ)求图中实数的值;(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在考试中成绩不低于60分的人数;(Ⅲ)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
(本小题满分12分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表: (1)在这批树苗中,其高度在85厘米以上的树苗大约有多少棵? (2)这批树苗的平均高度大约是多少?; (3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗A和组中的树苗C同时被移出的概率是多少?
(本小题满分12分)已知实数,设P:函数在R上单调递减, Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
设函数 (1)若上的最大值 (2)若在区间[1,2]上为减函数,求a的取值范围。 (3)若直线为函数的图象的一条切线,求a的值。
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。 (1)求的重心G的轨迹方程; (2)如果的外接圆的方程。
已知数列满足:已知存在常数p,q使数列为等 比数列。 (1)求常数p、q及的通项公式; (2)解方程 (3)求