如图已知四边形ABCD是平行四边形,AC与BD相交于O点,且BC⊥AC,AB=8,∠ABC=30°,(1)求AD和BD的长;(2)求平行四边形ABCD的面积.
已知正实数 a , b 满足: a + b = 1 ,且 1 - b + a 1 - b - a + 1 - b - a 1 - b + a = - 4 ,求 a b 的值.
(1)先化简再求值: a 2 - b 2 a 2 b + a b 2 ÷ 1 - a 2 + b 2 2 ab ,其中 a = 2 + 3 , b = 2 - 3
(2)已知 a , b , c 为 △ ABC 的三边,化简: a + b + c 2 + a - b - c 2 + b - a - c 2 .
若 1 3 - 7 的整数部分是 a ,小数部分是 b ,求 a 2 + 1 + 7 ab 的值.
在等腰梯形 ABCD 中, AB = DC = 5 , AD = 4 , BC = 10 ,点 E 在下底边 BC 上,点 F 在腰 AB 上.
(1)若 EF 平分等腰梯形 ABCD 的周长,设 BE 长为 x ,试用含 x 的代数式表示 △ BEF 的面积;
(2)是否存在线段 EF 将等腰梯形 ABCD 的周长和面积同时平分?若存在,求出此时 BE 的长;若不存在,请说明理由;
(3)是否存在线段 EF 将等腰梯形 ABCD 的周长和面积同时分成 1 : 2 的两部分?若存在,求出此时 BE 的长;若不存在,请说明理由.
如图,在平面直角坐标系中, △ AOB 的边 OA 在 x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B 作 BE ⊥ x 轴,垂足为 E , tan ∠ BAE = 4 3 ,动点 M 以每秒 1 个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M 作 x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF 与 △ AOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) s .
(1)求点 B 的坐标;
(2)求 S 关于 t 的函数解析式,并写出自变量 t 的取值范围;
(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M , A , O , P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.