如图,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC边上一点,△PAD的面积为,设AB=x,AD=y。(1)求y与x的函数关系式;(2)若∠APD=450,当y=1时,求PB·PC的值;(3)若∠APD=900,求y的最小值。
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有 60 人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是 144 度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 48 人.
解不等式≥,并把它的解集在数轴上表示出来.
对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?
在正方形外侧作直线,点关于直线的对称点为,连接,其中交直线于点.(1)依题意补全图1;(2)若,求的度数;(3)如图2,若,用等式表示线段之间的数量关系,并证明.