某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有 60 人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是 144 度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 48 人.
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.
某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
化简:
如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.
问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍。 解:设所求方程的根为y,则y=2x,所以 把代入已知方程,得 化简,得: 故所求方程为 这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式) (1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:; (2)已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。