过点的圆C与直线相切于点.(1)求圆C的方程;(2)已知点的坐标为,设分别是直线和圆上的动点,求的最小值.(3)在圆C上是否存在两点关于直线对称,且以为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹方程,指出轨迹是什么?并求出该轨迹的焦点和离心率.
设函数. (1)求函数的单调区间. (2)若方程有且仅有三个实根,求实数的取值范围.
已知命题方程有两个不等的正实数根;命题方程无实数根。若“或”为真命题,求的取值范围.
(本小题满分13分)已知函数. (1)若对于区间内的任意,总有成立,求实数的取值范围; (2)若函数在区间内有两个不同的零点,求: ①实数的取值范围;②的取值范围.
(本小题满分13分)已知数列中,,其前项和满足. (1)求证:数列为等差数列,并求的通项公式; (2)设,求数列的前项和; (3)设(为非零整数,),是否存在确定的值, 使得对任意,有恒成立.若存在求出的值,若不存在说明理由。