如图,抛物线关于直线对称,与坐标轴交于A、B、C三点,且AB=4,点D在抛物线上,直线是一次函数的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC的面积,求k的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于M、N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.
已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD. 求证:(1)BC=AD; (2)△OAB是等腰三角形
如图,AC⊥CB,垂足为C点,AC=CB=8cm,点Q是AC的中点,动点P由B点出发,沿射线BC方向匀速移动.点P的运动速度为2cm/s.设动点P运动的时间为ts.为方便说明,我们分别记三角形ABC面积为S,三角形PCQ的面积为S1,三角形PAQ的面积为S2,三角形ABP的面积为S3. (1)S3=cm2(用含t的代数式表示); (2)当点P运动几秒,S1=S,说明理由; (3)请你探索是否存在某一时刻,使得S1=S2=S3, 若存在,求出t值,若不存在,说明理由.
如图,在数轴上的A1、A2、A3、A4…A20,这20个点所表示的数分别为a1、a2、a3、a4、…a20.若A1A2=A2A3=…=A19A20,且a3=20 ,=12. (1)求a1的值; (2)若=a2+a4,求x的值; (3)求a20的值.
已知面包店的面包一个8元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜16元”,小明说:“我买这些就好了,谢谢”,根据两人的对话,判断结账时小明买了多少个面包?
已知y1=-x+3,y2=2x-3. (1)当x取何值时,y1=y2; (2)当x取何值时,y1的值比y2的值的2倍大8; (3)先填表,后回答: 根据所填表格,回答问题:随着x的值增大,、的值分别有怎样的变化?