某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;(Ⅲ) 从该车间名工人中,任取人,求恰有名优秀工人的概率.
已知圆C:(x-1) +(y-2) =25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R) (1)证明:无论m取什么实数,L与圆恒交于两点. (2)求直线被圆C截得的弦长最小时L的方程.
已知圆x2+y2=8,定点P(4,0),问过P点的直线斜率在什么范围内取值时,这条直线与已知圆(1)相切 ,(2)相交, (3)相离?
已知方程表示一个圆。 (1)求t的取值范围; (2)求该圆半径r的最大值及此时圆的标准方程
ABC的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。