已知向量,,-<θ<.(Ⅰ)若,求θ;(Ⅱ)求的最大值.
某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20.(Ⅰ)请补全频率分布直方图;(Ⅱ)由此估计该班的平均分;(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为,求的概率.
如图6,在三棱柱中,△ABC为等边三角形,侧棱⊥平面,,D、E分别为、的中点.(Ⅰ)求证:DE⊥平面;(Ⅱ)求BC与平面所成角;(Ⅲ)求三棱锥的体积.
甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢.(Ⅰ)求两个骰子向上点数之和为8的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由
如图5,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.(Ⅰ)求证:P、C、D、Q四点共面;(Ⅱ)求证:QD⊥AB.
甲、乙两人同时生产一种产品,6天中,完成的产量茎叶图(茎表示十位,叶表示个位)如图所示:(Ⅰ)写出甲、乙的众数和中位数;(Ⅱ)计算甲、乙的平均数和方差,依此判断谁更优秀?