.袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数的概率分布.
已知α,β∈(0,π),且tan(α-β)=,tanβ=-,求2α-β的值.
已知函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈(-,),求f(x0+1)的值.
已知函数f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.
已知α,β∈(0,π),且tanα=2,cosβ=-.(1)求cos2α的值;(2)求2α-β的值.
已知函数f(x)=-sin(2x+)+6sinxcosx-2cos2x+1,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最大值和最小值.