设数列{an}是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an}和{bn}的通项公式:(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
(本小题满分12分) 在平面直角坐标系中有两定点,,若动点M满足,设动点M的轨迹为C。 (1)求曲线C的方程; (2)设直线交曲线C于A、B两点,交直线于点D,若,证明:D为AB的中点。
(本小题满分12分) 某同学参加3门课程的考试,假设该同学第一门课程取得优秀成绩的概率为。第二、第三门课程取得优秀成绩的概率均为,且不同课程是否取得优秀成绩相互独立。 (1)求该生恰有1门课程取得优秀成绩的概率; (2)求该生取得优秀成绩的课程门数X的期望。
(本小题满分12分) 已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E、F分别为BC、PD的中点。 (1)求证:PB//平面AFC; (2)求平面PAE与平面PCD所成锐二面角的余弦值。
(本小题满分12分) 已知等差数列是递增数列,且满足 (1)求数列的通项公式; (2)令,求数列的前项和
(本小题满分12分) 已知集合 (1)若; (2)若的充分条件,求实数的取值范围。