如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。
已知直线经过y=kx+b经过(—2,0)(1,6),求不等式kx+b≥ -x的解集。
已知二次函数当x=时,有最大值,且当x=0时,y=,求二次函数的解析式。
解方程 (1) (2)(x+3)(x-6)=
2015年9月19日第九届合肥文博会开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少? (3)开幕后,合肥市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少?
如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米. (1)求直线OA的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.