在平面直角坐标系中,已知,,,,其中.设直线与的交点为,求动点的轨迹的参数方程(以为参数)及普通方程.
如图(1),在三角形ABC中,BA=BC=2,∠ABC=90°,点O,M,N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示. (1)求证:AB∥平面CMN; (2)求平面ACN与平面CMN所成角的余弦; (3)求点M到平面ACN的距离.
某次月考从甲、乙两班中各抽取20个物理成绩,整理数据得到茎叶图如图所示,根据茎叶图解决下列问题. (1)分别指出甲乙两班物理样本成绩的中位数; (2)分别求甲乙两班物理样板成绩的平均值; (3)定义成绩在80分以上为优秀,现从甲乙两班物理样本成绩中有放回地各随机抽取两次,每次抽取1个成绩,设ξ表示抽出的成绩中优秀的个数,求ξ的分布列及数学期望.
已知函数f(x)=4cos2x﹣4sinxcosx﹣2(x∈R). (1)求函数f(x)的单调递增区间; (2)设△ABC的内角A,B,C对应边分别为a、b、c,且c=3,f(C)=﹣4,若向量=(1,sinA)与向量=(1,2sinB)共线,求a、b的值.
数列{}是等差数列且,,数列{}的前项和为,且. (Ⅰ)求数列{},{}的通项公式; (Ⅱ)求数列{}的前n项和为.
如图,在四棱锥P﹣ABCD中,底面ABCD是边长为的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD. (1)求证:EF∥平面PAD; (2)求证:平面PAB⊥平面PCD.