“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).(1)当时,求函数的表达式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
(本小题满分10分)已知, . (1)若,求实数a的取值范围; (2)若,求实数a的取值范围.
(本小题满分14分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质. (1)若,判断是否具有性质,说明理由; (2)若函数具有性质,试求实数的取值范围.
(本小题满分12分)已知函数图象的一部分如图所示. (1)求函数的解析式; (2)当时,求函数的最大值与最小值及相应的的值.
(本小题满分12分)设函数. (1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为2,求的值,并求出的对称轴方程.
(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳。 (1)试求的函数关系式; (2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由。