已知正项数列中,,点在抛物线上;数列中,点在过点(0, 1),以为斜率的直线上。(1)求数列的通项公式; (2)若 , 问是否存在,使成立,若存在,求出值;若不存在,说明理由;(3)对任意正整数,不等式恒成立,求正数的取值范围。
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.
设是定义在R上的两个函数,是R上任意两个不等的实根,设恒成立,且为奇函数,判断函数的奇偶性并说明理由。
(本小题满分14分)函数 (1)若,求的值域(2)若在区间上有最大值14。求的值; (3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间
(本小题满分12分)已知函数,且 (1)判断的奇偶性,并证明;(2)判断在上的单调性,并证明;(3)若,求的取值范围。
(本小题满分12分)某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是:,该商品的日销量(件)与时间(天)的函数关系是 ,求该商品的日销量金额的最大值,并指出日销售金额最多的一天是30天中的第几天。