在长方形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示。试求图中阴影部分的总面积。
已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0). (1)求抛物线C1的解析式的一般形式; (2)当m=2时,求h的值; (3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.
已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P. (1)当点P在线段AB上时,求证:△APQ∽△ABC; (2)当△PQB为等腰三角形时,求AP的长.
已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.
某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题. (1)样本中最喜欢A项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度; (2)请把条形统计图补充完整; (3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C. (1)求∠BAC的度数; (2)求证:AD=CD.