在平面直角坐标系 x O y 中,已知椭圆 C 的中心在原点 O ,焦点在 x 轴上,短轴长为2,离心率为 2 2 . (I)求椭圆 C 的方程; (II) A , B 为椭圆 C 上满足 △ A O B 的面积为 6 4 的任意两点, E 为线段 A B 的中点,射线 O E 交椭圆 C 与点 P ,设,求实数 O P ⇀ = t O E ⇀ 的值.
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=(Ⅰ)求角B的大小;(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
已知函数. (1)若,,求证:; (2)若实数满足.试求的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数). (1)若曲线与曲线只有一个公共点,求的取值范围; (2)当时,求曲线上的点与曲线上的点的最小距离.
如图,已知为锐角△的内心,且,点为内切圆与边的切点,过点作直线的垂线,垂足为. (1)求证:; (2)求的值.
已知双曲线与椭圆有相同的焦点,点、分别是椭圆的右、右顶点,若椭圆经过点. (1)求椭圆的方程; (2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程; (3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.