在直角坐标系 x O y 中以 O 为极点, x 轴正半轴为极轴建立坐标系.圆 C 1 ,直线 C 2 的极坐标方程分别为 ρ = 4 sin θ , ρ = cos ( θ - π 4 ) = 2 2 . (I)求 C 1 , C 2 交点的极坐标. (II)设 P 为 C 1 的圆心,为 C 1 , C 2 交点连线的中点,已知直线 P Q 的参数方程为 { x = t 3 + a y = b 2 t 3 + 1 ( t ∈ R 为参数),求 a , b 的值.
要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga+lgb,试确定p和q应满足的关系.
已知lgx = a,lgy = b,lgz = c,且有a+b+c = 0,求x·y·x的值.
已求函数的单调区间.
如图,A,B,C为函数的图象上的三点,它们的横坐标分别是t, t+2, t+4(t1). (1)设ABC的面积为S 求S="f" (t) ; (2)判断函数S="f" (t)的单调性; (3) 求S="f" (t)的最大值.
现有某种细胞100个,其中有占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过个?(参考数据:)