在直角坐标系中,以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系.已知点 A 的极坐标为 ( 2 , π 4 ) ,直线 l 的极坐标方程为 ρ cos ( θ - π 4 ) = a ,且点 A 在直线 l 上。 (Ⅰ)求 a 的值及直线 l 的直角坐标方程; (Ⅱ)圆 C 的参数方程为 { x = 1 + cos a y = sin a ( a 为参数 ) ,试判断直线 l 与圆 C 的位置关系.
已知,,且直线与曲线相切. (1)若对内的一切实数,不等式恒成立,求实数的取值范围; (2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立; (3)求证:.
设,,其中是常数,且. (1)求函数的极值; (2)证明:对任意正数,存在正数,使不等式成立; (3)设,且,证明:对任意正数都有:.
已知二次函数,关于x的不等式的解集为,其中m为非零常数.设. (1)求a的值; (2)如何取值时,函数存在极值点,并求出极值点; (3)若m=1,且x>0,求证:
设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).
设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.