已知等差数列 { a n } 的公差 d = 1 ,前 n 项和为 S n . (I)若 a 1 , a 3 成等比数列,求 a 1 ; (II)若 S 5 > a 1 a 9 ,求 a 1 的取值范围.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点. (1)求证:∥平面; (2)求异面直线与所成角的余弦值.
已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.
已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上). (1)求此球的体积; (2)求此球的内接正方体的体积; (3)求此球的表面积与其内接正方体的全面积之比.
已知函数满足:对任意,都有成立,且时,. (1)求的值,并证明:当时,; (2)判断的单调性并加以证明; (3)若在上递减,求实数的取值范围.
设函数 (). (1)若为偶函数,求实数的值; (2)已知,若对任意都有恒成立,求实数的取值范围.