设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最大值。
(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上. ⑴求椭圆的方程; ⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使. ①试求直线与的斜率的乘积; ②试求的值.
(本题12分)已知椭圆的离心率,过、两点的直线到原点的距离是. (1)求椭圆的方程 ; (2)已知直线交椭圆于不同的两点、,且、都在以为圆心的圆上,求的值.
(本题12分)已知中心在原点的双曲线的右焦点为,右顶点为. (1)试求双曲线的方程; (2)过左焦点作倾斜角为的弦,试求的面积(为坐标原点).
(本题12分)已知命题:方程表示焦点在轴上的椭圆;命题:点在圆内.若为真命题,为假命题,试求实数的取值范围.
(本题12分)已知椭圆的焦点是和,又过点. (1)求椭圆的离心率; (2)又设点在这个椭圆上,且,求的余弦的大小.