如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.(Ⅰ)求PD与BC所成角的大小;(Ⅱ)求证:BC⊥平面PAC;(Ⅲ)求二面角A-PC-D的大小.
(本小题满分12分)已知,且是的充分条件,求取值范围.
(本大题满分14分)设函数上两点,若,且P点的横坐标为.(1)求P点的纵坐标;(2)若求;(3)记为数列的前n项和,若对一切都成立,试求a的取值范围.
(本大题满分13分)已知函数在处取得极值(1)求b与a的关系;(2)设函数,如果在区间(0,1)上存在极小值,求实数a的取值范围
(本大题满分12分)某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由
(本大题满分12分)中角A的对边长等于2,向量向量.(1)当取最大值时,求角A的大小;(2)在(1)条件下,求面积的最大值.