如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.(Ⅰ)求PD与BC所成角的大小;(Ⅱ)求证:BC⊥平面PAC;(Ⅲ)求二面角A-PC-D的大小.
已知是定义在R上的函数,其图象交轴于A、B、C三点,若B点坐标为,且在和上有相同的单调性,在和上有相反的单调性.(1)求的值;(2)在函数的图象上是否存在一点,使得在点M的切线的斜率为?若存在,求出M点的坐标;若不存在,说明理由;(3)求的取值范围.
已知数列满足,且对于任意的正整数都有成立.(1)求;(2)证明:存在大于1的正整数,使得对于任意的正整数,都能被整除,并确定的值.
设,若成公差大于0的等差数列,(1)求的值;(2)求的值;(3)求的值.
由数字1、2、3、4、5、6组成无重复数字的数中,求:(1)六位偶数的个数;(2)求三个偶数互不相邻的六位数的个数;(3)求恰有两个偶数相邻的六位数的个数;(4)奇数字从左到右从小到大依次排列的六位数的个数.
已知函数,(1)求函数的单调区间和函数的极值;(2)当时,求函数的最大值与最小值.