如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.(Ⅰ)求PD与BC所成角的大小;(Ⅱ)求证:BC⊥平面PAC;(Ⅲ)求二面角A-PC-D的大小.
阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.(Ⅰ)求曲线C的离心率及焦点坐标;(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.(1) (2)
设为非零实数,(Ⅰ)写出并判断是否为等比数列.若是,给出证明;若不是,说明理由;(Ⅱ)设,求数列的前n项和.
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点.(Ⅰ)求实数m的取值范围;(Ⅱ)求以PQ为直径且过坐标原点的圆的方程.
一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米.(Ⅰ)建立如图所示的平面直角坐标系xOy,试求拱桥所在抛物线的方程;(Ⅱ)若一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?
设函数,其中.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为,求a的值.