如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.(Ⅰ)求PD与BC所成角的大小;(Ⅱ)求证:BC⊥平面PAC;(Ⅲ)求二面角A-PC-D的大小.
求下列各式的值:(Ⅰ)(Ⅱ)(其中e=2.71828…)
已知集合,,.(1)求;(2)若,求实数的取值范围.
已知函数(且).(Ⅰ)用定义证明函数在上为增函数;(Ⅱ)设函数,若[2, 5 ]是的一个单调区间,且在该区间上恒成立,求实数m的取值范围.
已知椭圆C的中心为坐标原点,长轴长为4,一条准线方程为(1)求椭圆C的标准方程;(2)求椭圆C被直线y=x+1截得的弦长;(3)已知点A为椭圆的左顶点,过点A作斜率为的两条直线与椭圆分别交于点P,Q,若,证明:直线PQ过定点,并求出定点的坐标.
已知圆,直线过定点A(1,0)(1)若直线平分圆的周长,求直线的方程;(2)若直线与圆相切,求直线的方程;(3)若直线与圆C交于PQ两点,求△CPQ面积的最大值,并求此时的直线方程.