如图,直四棱柱 的底面 是平行四边形,, ,,点 是 的中点,点 在 且.(Ⅰ)证明:平面;(Ⅱ)求锐二面角平面角的余弦值.
已知函数 (1)当时,求函数的定义域、值域及单调区间; (2)对于,不等式恒成立,求正实数的取值范围.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本(万元)与年产量(吨)之间的函数关系式近似地表示为.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润; (2)年产量为多少吨时,每吨的平均成本最低?并求出最低成本。
已知 (1)当时,求; (2) 若,求实数的取值范围.
求值:
(1)当时,在上恒成立,求实数的取值范围; (2)当时,若函数在上恰有两个不同零点,求实数的取值范围; (3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。