如图,直四棱柱 的底面 是平行四边形,, ,,点 是 的中点,点 在 且.(Ⅰ)证明:平面;(Ⅱ)求锐二面角平面角的余弦值.
(本小题满分14分) 已知椭圆的离心率为,其中左焦点F(-2,0). (1) 求椭圆C的方程; (2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上, 求m的值.
(本小题满分14分) 如图,正三棱柱中,为 的中点,为边上的动点. (Ⅰ)当点为的中点时,证明DP//平面; (Ⅱ)若,求三棱锥的体积.
(本小题满分14分) 已知,设函数
2,4,6
(1)求的最小正周期及单调递增区间;
(本小题满分12分) 在△ABC中,角A、B、C所对边分别为a,b,c,已知, (1)求角C的大小; (2)若最长边的边长为l0 ,求△ABC的面积.
(本小题满分12分) 设递增等差数列的前项和为,已知,是和的等比中项。 (1)求数列的通项公式; (2)求数列的前项和