小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案: (1)小明是在n边形内取一点P,然后分别连结PA1、PA2、…、PAn(如图1);(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.
某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个): 经统计发现两班总分相等.此时有学生建议,可以通过考查数据中的其他信息作为参考.请你回答下列问题: (1)计算两班的优秀率. (2)求两班比赛数据的中位数. (3)计算两班比赛数据的方差并比较. (4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务。问原计划每天铺多少千米,计划多少天完成?
化简求值:
如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE). (1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由; (2)设=k,是否存在这样的k值,使得△AEF与△BFC相似,若存在,证明你的结论并求出k的值;若不存在,说明理由.
(1)操作发现: 如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论. (2)类比探究: 如图,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.