如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.(1)四边形ABCD一定是 四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由;(3)设P(,),Q(,)(x2 > x1 > 0)是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
本题满分11分.(为方便答题,可在答题卡上画出你认为必要的图形)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1 ,且BD1⊥CE1 ;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)
本题满分11分.如图,已知直线y=-x +3分别与x、y轴交于点A和B.(1)求点A、B的坐标;(2)求原点O到直线l的距离;(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M的坐标.
本题满分9分.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
本题满分9分.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.