已知,,且.(1)求函数的最小正周期及单调增区间;(2)若,求函数的最大值与最小值.
如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.
定义在上的函数满足,且.若是上的减函数,求实数的取值范围.
已知且,若函数在区间的最大值为10,求的值.
根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.
是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论.