在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支﹒求(Ⅰ)恰有1支一等品的概率;(Ⅱ)没有三等品的概率﹒
(本小题满分14分)已知,,点的坐标为(1)当时,求的坐标满足的概率。(2)当时,求的坐标满足的概率。
(本小题满分12分)如图,在平面四边形中,是正三角形,,. (Ⅰ)将四边形的面积表示成关于的函数;(Ⅱ)求的最大值及此时的值.
(本小题满分12分)已知直线 经过点,,直线经过点,。(1)若,求的值。(2)若,求的值。
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f(x)= .(Ⅰ)求f(x)在[-1, 1]上的解析式; (Ⅱ)证明f(x)在(0, 1)上时减函数; (Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.