为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(Ⅰ)第二小组的频率是多少?样本容量是多少?(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(Ⅲ)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.
(1)在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求a的值;(2)设矩阵,求点P(2,2)在A所对应的线性变换下的象。
已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,讨论的单调性.
已知函数()(1)若,求在上的最小值和最大值;(2)如果对恒成立,求实数的取值范围
(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)
(本小题满分13分)已知函数为自然对数的底数,(1)求的单调区间,若有最值,请求出最值;(2)当图象的一个公共点坐标,并求它们在该公共点处的切线方程。