(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
P ( K 2 ≥ K )
0.050
0.010
0.001
K
3.841
6.635
10.828
K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d ) .
如图,四棱锥 P - ABCD 中,侧面PAD为等边三角形且垂直于底面ABCD, AB = BC = 1 2 AD , ∠ BAD = ∠ ABC = 90 ° .
(1)证明:直线BC∥平面PAD;
(2)若△PCD面积为 2 7 ,求四棱锥 P - ABCD 的体积.
已知等差数列 { a n } 的前n项和为Sn,等比数列 { b n } 的前n项和为Tn, a 1 =﹣ 1 , b 1 = 1 , a 2 + b 2 = 2 .
(1)若 a 3 + b 3 = 5 ,求 { b n } 的通项公式;
(2)若 T 3 = 21 ,求S3.
已知函数 f ( x )= x + 1 ﹣ | 2 x ﹣ 3 | .
(Ⅰ)在图中画出 y = f ( x ) 的图象;
(Ⅱ)求不等式 | f ( x ) | > 1 的解集.
在直角坐标系 xOy 中,曲线C1的参数方程为 x = a cos t y = 1 + asint (t为参数, a > 0 ).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线 C 2 : ρ = 4 cosθ .
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为 θ = α 0 ,其中α0满足 tan α 0 = 2 ,若曲线C1与C2的公共点都在C3上,求a.