(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)
.(本小题满分14分) 如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.. (Ⅰ)求证:∥; (Ⅱ)求二面角的余弦值; (Ⅲ)求正方体被平面所截得的几何体的体积.
.(本小题满分14分) 某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1) 问各班被抽取的学生人数各为多少人? (2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分12分) 已知 (1)若的图象有与轴平行的切线,求的取值范围; (2)若在时取得极值,且恒成立,求的取值范围.
(本小题满分14分) 已知函数. ⑴若曲线在处的切线方程为,求实数和的值; ⑵求证;对任意恒成立的充要条件是; ⑶若,且对任意、,都,求的取值范围.
(本小题满分13分) 在数列中,,点在直线上,设,数列是等比数列. ⑴求出实数; ⑵令,问从第几项开始,数列中连续20项之和为100?