(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)
已知函数 (Ⅰ)若在上单调递增,求的取值范围; (Ⅱ)若定义在区间D上的函数对于区间D上的任意两个值总有以下不等式成立,则称函数为区间D上的“下凸函数”. 试证当时,为“下凸函数”.
中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点P. (1)求C的标准方程; (2)直线与C交于A、B两点,M为AB中点,且AB=2MP.请问直线是否经过某个定点,如果经过定点,求出点的坐标;如果不过定点,请说明理由.
已知. (1)求极值; (2)
平面坐标系中,A,B坐标为A(-3,0),B(3,0),点P(x,y)满足. (1)求点P的轨迹方程C; (2) 如果过A的一条直线与C交于M,N两点,且MN=6,求的方程
等差数列不是常数列,且,若构成等比数列. (1)求; (2)求数列前n项和