在△ABC中,角A、B、C所对的边分别为a、b、c,且cosA=.(1)求+cos2A的值;(2)若a=,求bc的最大值.
设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.
设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.
的偶函数,其图象关于点对称,且在区间上是单调 函数.求的值.
已知两点,点为坐标平面内的动点,且满足. (Ⅰ)求点的轨迹的方程; (Ⅱ)设过点的直线斜率为,且与曲线相交于点、,若、两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.
已知函数,直线与函数图象相切. (Ⅰ)求直线的斜率的取值范围; (Ⅱ)设函数,已知函数的图象经过点,求函数的极值.