已知圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(I)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(II)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm,怎样确定广告的高与宽的尺寸(单位cm),能使矩形广告面积最小?
已知等差数列{}中.(1)求数列{}的通项公式;(2)若,求数列的前项和.
设正项等差数列的前n项和为,其中.是数列中满足的任意项.(1)求证:;(2)若也成等差数列,且,求数列的通项公式;(3)求证:.
2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形和构成的面积为200的十字型地域,计划在正方形上建一座“观景花坛”,造价为4200元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元,再在四个空角(如等)上铺草坪,造价为80元.设长为,长为.(1)试找出与满足的等量关系式;(2)设总造价为元,试建立与的函数关系;(3)若总造价不超过138000元,求长的取值范围.
已知数列满足:,数列满足.(1)若是等差数列,且求的值及的通项公式;(2)若是等比数列,求的前项和;(3)若是公比为的等比数列,问是否存在正实数,使得数列为等比数列?若存在,求出的值;若不存在,请说明理由.