(本小题满分12分)如图,已知椭圆C:,经过椭圆C的右焦点F且斜率为k(k≠0)的直线交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;
某蔬菜基地种植甲、乙两种无公害蔬菜,生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨。现该基地仅有电力390千瓦时,肥240吨。已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利500元,在上述电力、肥的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?
在中,a、b、c分别是角A、B、C的对边,且为最大边,.(1)求的值;(2)若,求边长.
已知等比数列前项之和为, ,,求和
(本小题满分12分)有一个容量为50的样本,数据的 分组及各组的频数如下 3; 8; 9; 11; 10; 5; 4.(1)列频率分布表(2)画出频率分布直方图(3)根据频率分布直方图估计数据落在的概率是多少
(本小题满分12分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间 ,求你离家前不能看到报纸(称事件A)的概率是多少?