(本小题满分12分)如图,已知椭圆C:,经过椭圆C的右焦点F且斜率为k(k≠0)的直线交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;
【原创】设函数 (1)设且对于任意非零实数,都有成等比数列,求的解析式; (2)设 ①若求证:; ②若为正项等比数列,求的值.
在平面直角坐标系中,已知过点的椭圆:的右焦点为,过焦点且与轴不重合的直线与椭圆交于,两点,点关于坐标原点的对称点为,直线,分别交椭圆的右准线于,两点. (1)求椭圆的标准方程; (2)若点的坐标为,试求直线的方程; (3)记,两点的纵坐标分别为,,试问是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形构成,其中为的中点.现准备在公园里建设一条四边形健康跑道,按实际需要,四边形的两个顶点分别在线段上,另外两个顶点在半圆上, ,且间的距离为1km.设四边形的周长为km. (1)若分别为的中点,求长; (2)求周长的最大值.
在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为. (1)求证://平面; (2)求的长; (3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知的周长为,且 (1)求边的长; (2)若的面积为,求角.