已知函数.(Ⅰ)若,求函数的单调区间; (Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为,对于任意的,函数 是的导函数)在区间上总不是单调函数,求的取值范围; (Ⅲ)求证:.
已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切. (1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程; (2)在曲线上有四个不同的点,满足与共线,与共线,且,求四边形面积的最小值.
已知函数() (1)若在点处的切线方程为,求的解析式及单调递减区间; (2)若在上存在极值点,求实数的取值范围.
已知数列的前项和,数列满足. (1)求数列的通项; (2)求数列的通项; (3)若,求数列的前项和.
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上. (1)求证:平面; (2)求折后直线与平面所成角的余弦值.
已知关于的一元二次函数,设集合,分别从集合P和Q中随机取一个数作为和 (1)求函数有零点的概率; (2)求函数在区间上是增函数的概率。