在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。(1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
已知,点在函数的图象上,其中 (1)证明:数列是等比数列,并求数列的通项公式; (2)记,求数列的前项和.
设 (1)当,解不等式; (2)当时,若,使得不等式成立,求实数的取值范围.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为(t为参数,0<a<),曲线C的极坐标方程为. (1)求曲线C的直角坐标方程; (2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
如图,已知⊙O是的外接圆,是边上的高,是⊙O的直径. (1)求证:; (2)过点作⊙O的切线交的延长线于点,若,求的长.
设. (Ⅰ)若,讨论的单调性; (Ⅱ)时,有极值,证明:当时,