为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
(1)设,求函数的最大值; (2)已知x、y都是正实数,且,求的最小值.
已知实数x,y满足. (1)求的最小值和最大值; (2)求的取值范围; (3)求的最小值;(4)求最小值.
设全集,已知集合,. (1)求; (2)记集合,已知集合,若,求实数a的取值范围.
已知复数. (1)若复数z在复平面上所对应的点在第二象限,求m的取值范围; (2)求当m为何值时,最小,并求的最小值.
(1)已知,求、、的取值范围; (2)设,试比较与的大小.