为了度过一个难忘而有意义的儿童节,某班级组织学生捐资购买了1440块甲种糖果和1230块乙种糖果,搭配并包装成A、B两种糖果礼包共20个(糖果可以有剩余),在六一节那天送给江都福利院的小宝宝们,已知搭配A种糖果包需要甲种糖果80块,乙种糖果50块;搭配B种糖果包需要甲种糖果40块,乙种糖果90块.(1)符合题意的包装方案有几种?请你帮忙设计出来;(2)若包装一个A种糖果礼包的费用是10元,包装一个B种糖果礼包的费用是8元,试说明(1)中哪种方案的包装费用最低,最低费用是多少元?
如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.
先化简,再求值:,其中x=﹣3.
如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.(1)如图1,求∠EBD的度数;(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.
阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1 把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求的值;(ii)求的值.