已知直三棱柱的三视图如图所示,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
如图,直三棱柱(侧棱垂直于底面)中,,点是棱的中点,且. (1)求证:; (2)求直线与平面所成角的正弦值.
直线l过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值.
椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且. (1)求抛物线的方程; (2)过点作直线交抛物线于,两点,求证:.