已知函数在上的最大值为1,求的值。
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。
已知直线l经过点(0,-2),其倾斜角是60°.(1)求直线l的方程;(2)求直线l与两坐标轴围成三角形的面积.
求直线被圆所截得的弦长.
已知为实数,(1)若,求在上最大值和最小值;(2)若在和上都是递增的,求的取值范围。
设a为实数, 函数 (Ⅰ)求的极值.(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.