已知正项数列在抛物线上;数列中,点在过点(0,1),以为斜率的直线上。(1)求数列的通项公式;(2)若成立,若存在,求出k值;若不存在,请说明理由;(3)对任意正整数,不等式恒成立,求正数的取值范围。
已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC, D、F分别为AC、PC的中点,DE⊥AP于E. (1)求证:AP⊥平面BDE; (2)求证:平面BDE⊥平面BDF; (3)若AE∶EP=1∶2,求截面BEF分三棱锥 P—ABC所成两部分的体积比.
在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值. 图①图②
如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB= (I)求三棱锥D—ABC的体积; (2)求二面角D—AC—B的大小; (3)求异面直线AB、CD所成的角.
四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD. (1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°
如图,直角梯形ABCE中,,D是CE的中点,点M和点N在ADE绕AD向上翻折的过程中,分别以的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0。 (1)求直线AE与平面CDE所成的角; (2)求证:MN//平面CDE。