(本小题满分12分)已知函数f(x)="lnx-ax-3" (a≠0).(1)讨论函数f(x)的单调性;(2)若对于任意的a∈[1,2],函数g(x)=x3+ [m-2f′(x)]在区间(a,3)上有最值,求实数m的取值范围
从某校高一年级随机抽取名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:
(I)求的值; (Ⅱ)若,补全表中数据,并绘制频率分布直方图; (Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替。若上述数据的平均值为7.84,求的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率。
(本小题满分10分)选修4—5:不等式选讲 设. (1)求的解集; (2)若不等式对任意实数恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程(为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (1)求圆的极坐标方程; (2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,已知圆外有一点,作圆的切线,为切点,过的中点,作割线,交圆于、两点,连接并延长,交圆于点,连接交圆于点,若. (1)求证:∽; (2)求证:四边形是平行四边形.
(本小题满分12分)函数,若曲线在点处的切线与直线垂直(其中为自然对数的底数). (1)若在上存在极值,求实数的取值范围; (2)求证:当时,.