(本小题满分12分)已知函数f(x)="lnx-ax-3" (a≠0).(1)讨论函数f(x)的单调性;(2)若对于任意的a∈[1,2],函数g(x)=x3+ [m-2f′(x)]在区间(a,3)上有最值,求实数m的取值范围
(本小题满分12分)已知,其中是自然对数的底数,(1)讨论时,的单调性。(2)求证:在(1)条件下,(3)是否存在实数,使得最小值是3,如果存在,求出的值;如果不存在,说明理由。
(本小题满分12分)定义在上的奇函数,已知当时,(1)写出在上的解析式(2)求在上的最大值(3)若是上的增函数,求实数的范围。
(本小题满分12分)定义在上的函数,对于任意的实数,恒有,且当时,。(1)求及的值域。(2)判断在上的单调性,并证明。(3)设,,,求的范围。
(本小题满分12分)解关于的不等式(其中是常数,且)
(本小题满分10分)定义在上的函数满足,且当时,,(1)求在上的表达式;(2)若,且,求实数的取值范围。