某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。(I)求a的值(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
已知函数,. (1)求函数的单调区间; (2)如果对于任意的,都有,求的取值范围.
已知等差数列的前项和为,公差,且. (1)求数列的通项公式; (2)设数列是首项为1,公比为的等比数列,求数列的前n项和.
已知正四棱柱中,是的中点. (1)求证:平面; (2)求证:; (3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.
某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示. (1)根据图中数据求的值 (2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组 各抽取多少名新生? (3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.
已知函数,. (1)求的最小正周期及值域; (2)求单调递增区间.