.已知盒子中有4个红球,2个白球,从中一次抓三个球(1)求没有抓到白球的概率;(2)记抓到球中的红球数为X ,求X的分布列和数学期望.
(本小题满分12分)设函数,若不等式的解集为。(1)求的值;(2)若函数在上的最小值为1,求实数的值。
(本小题满分12分)已知两直线.试确定的值,使(1)//;(2),且在轴上的截距为.
(本小题满分14分)已知函数的图象在点(为自然对数的底数)处的切线斜率为3.(1)求实数的值;(2)若,且对任意恒成立,求的最大值;(3)当时,证明.
(本小题满分14分)已知双曲线:和圆:(其中原点为圆心),过双曲线上一点引圆的两条切线,切点分别为、.(1)若双曲线上存在点,使得,求双曲线离心率的取值范围;(2)求直线的方程;(3)求三角形面积的最大值.
(本小题满分14分)已知数列的前项和,且.(1)求数列{an}的通项公式;(2)令,是否存在(),使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.