2012年10月莫言获得诺贝尔文学奖后,其家乡山东高密政府准备投资6.7亿元打造旅游带,包括莫言旧居周围的莫言文化体验区,红高粱文化休闲区,爱国主义教育基地等;为此某文化旅游公司向社会公开征集旅游带建设方案,在收到的方案中甲、乙、丙三个方案引起了专家评委的注意,现已知甲、乙、丙三个方案能被选中的概率分别为,且假设各自能否被选中是无关的.(1)求甲、乙、丙三个方案只有两个被选中的概率;(2)记甲、乙、丙三个方案被选中的个数为,试求的期望.
已知lgx+lgy=2 lg(2x-3y),求的值.
定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时, f(x)=-(a∈R). (1)求f(x)在[0,1]上的最大值; (2)若f(x)是[0,1]上的增函数,求实数a的取值范围.
已知函数f(x)=2x,g(x)=+2. (1)求函数g(x)的值域; (2)求满足方程f(x)-g(x)=0的x的值.
已知函数y=2-x2+ax+1在区间(-∞,3)内递增,求a的取值范围.
对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0). (1)当a=1,b=-2时,求函数f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.