2012年10月莫言获得诺贝尔文学奖后,其家乡山东高密政府准备投资6.7亿元打造旅游带,包括莫言旧居周围的莫言文化体验区,红高粱文化休闲区,爱国主义教育基地等;为此某文化旅游公司向社会公开征集旅游带建设方案,在收到的方案中甲、乙、丙三个方案引起了专家评委的注意,现已知甲、乙、丙三个方案能被选中的概率分别为,且假设各自能否被选中是无关的.(1)求甲、乙、丙三个方案只有两个被选中的概率;(2)记甲、乙、丙三个方案被选中的个数为,试求的期望.
(本大题9分)袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为,(Ⅰ)求n;(Ⅱ)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.
(本大题9分)已知是定义在R上的奇函数,当时, (1)求的表达式; (2)设0<a<b,当时,的值域为,求a,b的值.
已知函数 (Ⅰ)求函数的单调区间和最小值; (Ⅱ)若函数在上是最小值为,求的值; (Ⅲ)当(其中="2.718" 28…是自然对数的底数).
在极坐标系中,已知曲线设与交于点 (I)求点的极坐标; (II)若动直线过点,且与曲线交于两个不同的点求的最小值.
已知二次函数为偶函数,集合A=为单元素集合 (I)求的解析式 (II)设函数,若函数在上单调,求实数的取值范围.