已知数列的前项和满足,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,求证 .
如图,正三角形的边长为,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,. (1)当时,求的大小; (2)求的面积S的最小值及使S得取最小值时的值.
如图,在三棱柱 中,已知 ,, 与平面所成角为 ,平面. (Ⅰ)求证:; (Ⅱ)求三棱锥的高.
(本小题满分10分)如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点. (1)证明:; (2)设圆的半径为1,,延长交于点,求△外接圆的半径.
(本小题满分12分)已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为-1. (1)求的值及函数的极值; (2)证明:当时,。
(本小题满分12分)已知在平面直角坐标系中,椭圆,长半轴长为4,离心率为, (1)求椭圆的标准方程; (2)若点,问是否存在直线与椭圆交于两点且,若存在,求出直线斜率的取值范围;若不存在,请说明理由.