运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(Ⅰ)求这次行车总费用关于的表达式;(Ⅱ)当为何值时,这次行车的总费用最低,并求出最低费用的值.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,. (1)求证:OD//平面VBC; (2)求证:AC⊥平面VOD; (3)求棱锥的体积.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2. (1)求证: EC⊥CD ; (2)求证:AG∥平面BDE; (3)求:几何体EG-ABCD的体积.
如图,已知四棱锥,底面是等腰梯形, 且∥,是中点,平面,, 是中点. (1)证明:平面平面; (2)求平面与平面所成锐二面角的余弦值.
如图,三棱柱中,,,. (1)证明:; (2)若,,求三棱柱的体积.
如图,已知平面四边形中,为的中点,,, 且.将此平面四边形沿折成直二面角, 连接,设中点为. (1)证明:平面平面; (2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由. (3)求直线与平面所成角的正弦值.