如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,(1) 求证:DE⊥AC(2)求DE与平面BEC所成角的正弦值(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
已知直线:与圆C:, (1)若直线与圆相切,求m的值。 (2)若,求圆C截直线所得的弦长。
如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证: (1)平面ADE⊥平面BCC1B1; (2)直线A1F∥平面ADE.
在等比数列中,,公比,前项和,求首项和项数.
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积.
已知直线和直线,直线过点,并且直线和垂直,求的值。