已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足(Ⅰ) 求椭圆的标准方程;(Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程;(2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.
已知,,.(1)当时,试比较与的大小关系;(2)猜想与的大小关系,并给出证明.
如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:(1)直线平面;(2)平面平面.
设函数.(1)当时,求的展开式中二项式系数最大的项;(2)若且,求;
某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为.(Ⅰ)求比赛三局甲获胜的概率;(Ⅱ)求甲获胜的概率;(Ⅲ)设甲比赛的次数为,求的数学期望.