已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足(Ⅰ) 求椭圆的标准方程;(Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
利用基本不等式求最值: (1)若,求函数的最小值,并求此时x的值. (2)设,求函数的最大值.
(本小题满分10分)已知数列是一个等差数列,且,. (1)求的通项;(2)求前n项和的最大值.
已知数列的前项和为且. (1)求证数列是等比数列,并求其通项公式; (2)已知集合问是否存在实数,使得对于任意的都有? 若存在,求出的取值范围;若不存在,说明理由.
已知,P、Q分别是两边上的动点. (1)当,时,求PQ的长;(2)AP、AQ长度之和为定值4,求线段PQ最小值.