已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足(Ⅰ) 求椭圆的标准方程;(Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
1.已知数列,其中,且数列为等比数列,求常数. 2.设是公比不相等的两个等比数列,,证明数列不是等比数列.
设Sn为等差数列{an}的前n项和.(n∈N*). (Ⅰ)若数列{an}单调递增,且a2是a1、a5的等比中项,证明: (Ⅱ)设{an}的首项为a1,公差为d,且,问是否存在正常数c,使对任意自然数n都成立,若存在,求出c(用d表示);若不存在,说明理由.
已知等比数列及等差数列,其中,公差,将这两个数列对应项相加得到一个新的数列1,1,2,…,求这个新数列的前10项之和
设等差数列的前n项和为;设,问是否可能为一与n无关的常数?若不存在,说明理由.若存在,求出所有这样的数列的通项公式.
已知数列成等差数列,表示它的前项和,且,. ⑴求数列的通项公式; ⑵数列中,从第几项开始(含此项)以后各项均为负数?