设函数.(1)若曲线在点处与直线相切,求的值;(2)求函数的单调区间与极值点.(3)设函数的导函数是,当时求证:对任意成立
(本小题满分14分)如图,在五面体ABCDEF中,四边形ABCD是平行四边形.(1)若CF⊥AE,AB⊥AE,求证:平面ABFE⊥平面CDEF;(2)求证:EF//平面ABCD.
(本小题满分14分)若定义在上的函数满足,,.(Ⅰ)求函数解析式;(Ⅱ)求函数单调区间;(Ⅲ)若、、满足,则称比更接近.当且时,试比较和哪个更接近,并说明理由.
(本小题满分13分)已知椭圆的下顶点为,到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求的最大值;(Ⅱ)若直线与圆O:相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.
(本小题满分12分)如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
(本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.