如图,已知直线()与抛物线:和圆:都相切,是的焦点.(Ⅰ)求与的值;(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为, 直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
(本小题满分12分)证明函数只有一个零点.
.(本小题满分12分)已知函数在区间上的最大值为,最小值为. (Ⅰ)求的解析式; (Ⅱ)若函数在区间上为减函数,求实数的取值范围.
(本小题满分12分)已知椭圆()的离心率,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.
((本小题满分12分)当时,. (I);(II).
(本小题满分12分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD. (I)证明:平面PQC⊥平面DCQ; (II)求平面QBP与平面BPC夹角的余弦值.